Correlation of membrane protein conformational and functional dynamics. Conformational changes in ion channels lead to gating of an ion-conductive pore. Ion flux has been measured with high temporal resolution by single-channel electrophysiology for decades. However, correlation between functional and conformational dynamics remained difficult, lacking experimental techniques to monitor sub-millisecond conformational changes. Here, we use the outer membrane protein G (OmpG) as a model system where loop-6 opens and closes the β-barrel pore like a lid in a pH-dependent manner. Functionally, single-channel electrophysiology shows that while closed states are favored at acidic pH and open states are favored at physiological pH, both states coexist and rapidly interchange in all conditions. Using HS-AFM height spectroscopy (HS-AFM-HS), we monitor sub-millisecond loop-6 conformational dynamics, and compare them to the functional dynamics from single-channel recordings, while MD simulations provide atomistic details and energy landscapes of the pHdependent loop-6 fluctuations. HS-AFM-HS offers new opportunities to analyze conformational dynamics at timescales of domain and loop fluctuations. Nature Communications, 2021.

Recent publications

Free Energy Methods for the Description of Molecular Processes
Christophe Chipot;
Annual Review of Biophysics (2023) 52 (1):
A Practical Guide to Recent Advances in Multiscale Modeling and Simulation of BiomoleculesEnhanced Sampling Based on Collective Variables
Yong Wang; Ruhong Zhou; Haohao Fu; Wensheng Cai; Christophe Chipot; Xueguang Shao; (2023) 1-22
Chasing collective variables using temporal data-driven strategies
Haochuan Chen; Christophe Chipot;
QRB Discovery (2023) 413 (242-


- Renewal of the Laboratoire International Associé CNRS-University of Illinois at Urbana-Champaign on January 2021
- 新的分子动力学讲义 (Dissemination).
- Kudos to Margaret Blazhynska and Emma Goulard Coderc de Lacam on their DrEAM fellowship supporting their training in the Tajkhorshid and Gumbart research groups.


Laboratoire International Associé
Unité mixte de recherche n°7019
Université de Lorraine, B.P. 70239
54506 Vandoeuvre-lès-Nancy Cedex, France
Phone: +33(0)3 72 74 50 75
How to reach us