Highlight

Committor-Consistent Variational String Method. The treatment of slow and rare transitions in the simulation of complex systems poses a great computational challenge. A powerful approach to tackle this challenge is the string method, which represents the transition path as a one-dimensional curve in a multidimensional space of collective variables. Commonly used strategies for pathway optimization include aligning the tangent of the string to the local mean force or to the mean drift determined from swarms of short trajectories. Here, a novel strategy is proposed, allowing the string to be optimized based on a variational principle involving the unidirectional reactive flux expressed in terms of the time-correlation function of the committor. The method is illustrated with model systems and then probed with the alanine dipeptide and a coarse-grained model of the barstar-barnase protein complex. Successive iterations variationally refine the string toward an optimal transition pathway following the gradient of the committor between two metastable states. Journal of Physical Chemistry Letters, 2022.

Recent publications


Free Energy Methods for the Description of Molecular Processes
Christophe Chipot;
Annual Review of Biophysics (2023) 52 (1):
A Practical Guide to Recent Advances in Multiscale Modeling and Simulation of BiomoleculesEnhanced Sampling Based on Collective Variables
Yong Wang; Ruhong Zhou; Haohao Fu; Wensheng Cai; Christophe Chipot; Xueguang Shao; (2023) 1-22
Chasing collective variables using temporal data-driven strategies
Haochuan Chen; Christophe Chipot;
QRB Discovery (2023) 413 (242-

News

- Renewal of the Laboratoire International Associé CNRS-University of Illinois at Urbana-Champaign on January 2021
- 新的分子动力学讲义 (Dissemination).
- Kudos to Margaret Blazhynska and Emma Goulard Coderc de Lacam on their DrEAM fellowship supporting their training in the Tajkhorshid and Gumbart research groups.
 

Contact

Laboratoire International Associé
CNRS-UIUC
Unité mixte de recherche n°7019
Université de Lorraine, B.P. 70239
54506 Vandoeuvre-lès-Nancy Cedex, France
 
Phone: +33(0)3 72 74 50 75
 
How to reach us